Exercises 69

EXERCISES

4.1 Prove that isomorphism of field extensions is an equivalence relation.

15.8 4.2 Find the subfields of C generated by:

- (a) $\{0,1\}$
- (b) {0}
- (c) $\{0,1,i\}$
- (d) $\{i, \sqrt{2}\}$
- (e) $\{\sqrt{2}, \sqrt{3}\}$
- (f) R
- (g) $\mathbb{R} \cup \{i\}$
- 4.3 Describe the subfields of C of the form
 - (a) $\mathbb{Q}(\sqrt{2})$
 - (b) $\mathbb{Q}(i)$
 - (c) $\mathbb{Q}(\alpha)$ where α is the real cube root of 2
 - (d) $\mathbb{Q}(\sqrt{5},\sqrt{7})$
 - (e) $\mathbb{Q}(i\sqrt{11})$
 - (f) $\mathbb{Q}(e^2+1)$
 - (g) $\mathbb{Q}(\sqrt[3]{\pi})$
- 4.4 This exercise illustrates a technique that we will tacitly assume in several subsequent exercises and examples.

Prove that $1, \sqrt{2}, \sqrt{3}, \sqrt{6}$ are linearly independent over \mathbb{Q} .

(*Hint*: Suppose that $p + q\sqrt{2} + r\sqrt{3} + s\sqrt{6} = 0$ with $p, q, r, s \in \mathbb{Q}$. We may suppose that $r \neq 0$ or $s \neq 0$ (why?). If so, then we can write $\sqrt{3}$ in the form

$$\sqrt{3} = \frac{a+b\sqrt{2}}{c+d\sqrt{2}} = e+f\sqrt{2}$$

where $a, b, c, d, e, f \in \mathbb{Q}$. Square both sides and obtain a contradiction.)

- 4.5 Show that \mathbb{R} is not a simple extension of \mathbb{Q} as follows:
 - (a) Q is countable.
 - (b) Any simple extension of a countable field is countable.
 - (c) \mathbb{R} is not countable.
- 4.6 Find a formula for the inverse of $p+qi+r\sqrt{5}+si\sqrt{5}$, where $p,q,r,s\in\mathbb{Q}$.